
Pointers

� Every variable|even a const|has an address (\lvalue") and

value (\rvalue"), e.g., (which used where?): int a = 4; a ++;

� De�nition, initialization and assignment:

int some_info, *in_ptr = &some_info, **int_buffer_ptr;

char ch, *char_index; // allocation for _any_ pointer:

char_index = &ch; // (sizeof (int)) bytes (why?)

note *" in initialization, but not in assignment (why?)

� Dereferencing and pointer arithmetic:

*in_ptr += 2; // == some_info += 2;

in_ptr += 2; // == in_ptr increases by 2 * sizeof (int);

� Dereferencing) point to something or set to 0 at all times

Primarily for free store, unnamed memory allocation.

Copyright c
1997 by A. E. Naiman C++ Intro Slides|Pointers and Arrays, p. 2

Constant Pointers

float *fp;

const float *cfp; // cfp points to a "const float"

// fcp is a const pointer, to a float

float *const fcp = &some_float;

const float *const cfcp = &some_const_float;

can change what can point to a needs initialization

it points to const float (& cannot be changed)

fp

p � �

cfp � p �

fcp

p � p

cfcp � p p

Pointers to const are mainly for function arguments.

Copyright c
1997 by A. E. Naiman C++ Intro Slides|Pointers and Arrays, p. 3

Arrays and Pointers

long id_numbers [5];

long *id_num_ptr = &(id_numbers [3]);

� Similarities

� Both tags alone refer to address of its �rst element

if (id_num_ptr == id_numbers) { /* ... */ }

�) both can use array and pointer syntax

id_num_ptr [1] = *(id_numbers + 2);

� Di�erences

� id_numbers only has an rvalue: refers to address of

beginning of array and cannot be changed

� id_num_ptr also has an lvalue: an extra (long *) is

allocated and can be set to address of a long

Copyright c
1997 by A. E. Naiman C++ Intro Slides|Pointers and Arrays, p. 9

1{D Pointer and Array De�nitions

double *dp = 1000, da [5];

� Assume allocated at 4000 and 5000, resp.

� Bytes allocated

� dp: sizeof (void *) [4]

� da: 5 * sizeof (double) [40]

� sizeof (dp) and sizeof (da) return these numbers

� Note: initialization to 1000 is a bad idea (why?); better:

� dp gets set to address of double, e.g., &(da [3])

� dp gets return value of new() (later)

Copyright c
1997 by A. E. Naiman C++ Intro Slides|Pointers and Arrays, p. 11

1{D Pointers

syntax type lvalue rvalue comments

dp double * 4000 1000 name alone

dp + 2 double * | 1016 pointer arithmetic

Rule: in bytes: dp + 2 * sizeof (double) (i.e., remove 1 *)

*dp double 1000 r(1000)� pointer dereferencing

Rule: add a * of dereferencing) drop a * of the type

dp [3] double 1024 r(1024)� array syntax

Rule: foo [n] is just *(foo + n) (a combination)

�

r(n) means whatever resident at memory location n

Copyright c
1997 by A. E. Naiman C++ Intro Slides|Pointers and Arrays, p. 12

1{D Arrays

syntax type lvalue rvalue comments

da double [] | 5000 name alone

Rule: array without [] is rvalue of array beginning address

Rule: double [] is like a double * (but not exactly)

: same as pointer :

� Note: the size of 5 doubles was only used for

� initial allocation

� future invocations of sizeof()

Now for 2{D arrays : : : .

Copyright c
1997 by A. E. Naiman C++ Intro Slides|Pointers and Arrays, p. 13

2{D Pointer and Array De�nitions

double **dpp = 2000, dm [7][11];

� Assume allocated at 6000 and 7000, resp.

� Bytes allocated

� dpp: sizeof (void *) [4]

� dm: 7 * 11 * sizeof (double) [616]

� sizeof (dpp) and sizeof (dm) return these numbers

� Again, initialization to 2000 is a bad idea

� Now for same analysis, with (almost) same rules

Copyright c
1997 by A. E. Naiman C++ Intro Slides|Pointers and Arrays, p. 14

2{D Pointers

syntax type lvalue rvalue comments

dpp double ** 6000 2000 name alone

dpp + 2 double ** | 2008 pointer arithmetic

*dpp double * 2000 r(2000)� pointer dereferencing

**dpp double 9788 r(9788) multiple dereferencing

dpp [3] double * 2012 r(2012)+ array syntax

Rule: foo [n] is just *(foo + n)

dpp [3][5] double 8884 r(8884) multi-array syntax

Rule: foo [n][m] is just *(*(foo + n) + m)

�say, 9788; +say, 8844

Copyright c
1997 by A. E. Naiman C++ Intro Slides|Pointers and Arrays, p. 15

2{D Arrays

syntax type lvalue rvalue comments

dm double [][11] | 7000 name alone

Rule: compiler needs to know how to jump, e.g., dm [1][0]

Rule: array type retains all dimensions except �rst

dm + 2� double [][11] | 7176 partial pointer syntax

Rule: dm + n is just rvalue of &(dm [n][0])

dm [2]� double [] | 7176 partial array syntax

Rule: dm [n] is just rvalue of &(dm [n][0])

dm [2][4] double 7208 r(7208) full array syntax

�note the same values, but di�erent types (and � �� arithmetic)

Copyright c
1997 by A. E. Naiman C++ Intro Slides|Pointers and Arrays, p. 16

