
Preprocessors in C

1cprepr -

C Preprocessor
• has more capabilities than we will cover

• We will focus on this subset:
– including text file into your source code

#include <filename> - standard library

#include “filename” - own directory library

– Macro Substitution (with or without parameters)

a.k.a. Symbolic Constants (a symbol for a constant value)

e.g., #define EQUAL ==

would allow you to use EQUAL in place of ==

Preprocessors in C

2cprepr -

File Inclusion
• Does text inclusion - includes entire contents of

file in your source code at the point of #include
statement BEFORE it goes to the compiler

to include commonly used code, declarations

• #include “filename”
• searches your directory for the file to include

• #include <stdio.h>
• searches established list of system directories for

file to include
• .h is naming convention to indicate header file

Preprocessors in C

3cprepr -

#define (macro substitution)
• macros (a.k.a. Symbolic Constants)

does straight text replacement
#define PI 3.14159
#define SECONDS_PER_DAY (60 * 60 * 24)

• #define macroname definition of macro
• - all on one line OR use line continuation \
• #define PRINT_PROMPT printf(“Prompt: “)

• parameterized macros
• parameters are placeholders for arguments require

NO declaration
• #define MIN(x,y) (((x) < (y)) ? (x) : (y))

#define MIN4(a,b,c,d) min(min(a,b), min(c,d))

Preprocessors in C

4cprepr -

#define MAX_LOOPS 15

for(i = 1; i < MAX_LOOPS; ++i)

is replaced BEFORE compilation by

for(i = 1; i < 15; ++i)

#define

Preprocessors in C

5cprepr -

#define MAX (A,B) ((A) > (B) ? (A) : (B))

c = MAX(f + x, f + v);

-- is replaced BEFORE compilation by --

c = MAX((f + x) > (f + v) ? (f + x) : (f + v));

--- what happens here? ---

charge = MAX(fee + fixed_costs, fee + var_costs);

which is easier to read, the code before or after text
replacement?

#define (macros w/params)

Preprocessors in C

6cprepr -

#define SQUARE(x) x * x
(the symbols in the () will be replaced by parameter)

so ...
sq = SQUARE (z + 1);

-- becomes --
sq = z + 1 * z + 1

so what is wrong? Does this do what you want?

How can you make sure that it will?
(see previous example)

#define (macros w/params)

